An amazing discovery

"This breakthrough changes everything."

How Does Fuel Matrix Work?

The short executive summary:

Fuel Matrix utilizes intermolecular forces to help fuel pull more oxygen out of the air at the time of combustion. Combustion in an internal combustion engine involves the combination of fuel and air.   By polarizing hydrocarbon molecules and making them more attractive to oxygen molecules, Fuel Matrix increases the ratio of oxygen-to-fuel (not the ratio of air-to-fuel) during combustion.

Dry air at sea level consists of about 78% nitrogen and only 21% oxygen. Nitrogen is a relatively inert element that actually dampens (hinders) the process of combustion and "steals" oxygen for the creation of harmful NOx emissions. By increasing the attraction between hydrocarbon and oxygen molecules, Fuel Matrix reduces the amount of nitrogen available to the combustion process.  

The resultant combustion generates more energy so that even a highly efficient engine can produce the same amount of power  with less fuel.

The long, technical answer:

How Much Does It Cost?
Fuel Matrix is priced based upon clients volume of usage and is linked to the current price of fuel which always results in  significant net positive operational savings. Contact your representative for a current quote.
Will Using Fuel Matrix Hurt My Engine?
Absolutely not! We say that so emphatically because when Fuel Matrix is added to fuel, the fuel remains within the ASTM specifications for fuel that engine manufacturers calibrate their engines to. Put another way, you are still using fuel that matches exactly what your engine is designed to use.
How can it be possible to yield an average 15% fuel consumption decrease when the typical loss mechanism due to incomplete combustion is less than 5%?
Combustion is a chemical reaction between oxygen (from the air) and hydrocarbons (in fuel) that produces energy in the forms of heat and work. Depending on the efficiency of the combustion, a certain percentage of heat/work is used for the useful application (like driving car forward) and a certain percentage of heat/work is: a) used to achieve the minimum activation energy barriers for the oxygen - fuel molecules collisions to become effective and initiate chemical reaction, b) lost by fighting friction, or c) spent on endothermic reactions such as NOx formation between nitrogen and oxygen.  The 15% to 18% fuel consumption decrease when Fuel Matrix is added does not directly correlate to the percent of incomplete combustion. Instead, it directly correlates to the percentage of energy (heat and work) that was not lost during the combustion but rather was used for useful work (driving the car).  With Fuel Matrix, it takes an average of 15% less hydrocarbons to react with oxygen because there is an average of 15% less heat and work lost.  This extra 15% useful work increase is used to power the machine.
How does the power increase as much as it does with only 100 PPM of additive?
100 PPM of Fuel Matrix treatment (one part Fuel Matrix to ten thousand parts fuel) is enough to change the electromagnetic features of the fuel and create induced polarity in otherwise non-polar hydrocarbon molecules.  In turn, the polarized fuel molecules are better homogenized / mixed and react better with (polar) paramagnetic oxygen molecules.
What metal ions do you use and in what concentrations?
Some ions in Fuel Matrix include Calcium 2+ andMagnesium 2+. The concentrations are trace -- about as much as you would find in mineral water -- and cannot harm engines.
What is the ratio of ethanol and water in Fuel Matrix?
The ratio of ethanol to water in Fuel Matrix is greater than 40 to1, or well above any safety limits of water content in ethanol.  In addition, at a 1:10,000 ratio of Fuel Matrix to fuel, the amount of water introduced into the fuel from Fuel Matrix is insignificant, often less than would be in your fuel from water vapor in the air.
When added to fuel - how does Fuel Matrix form a matrix?
One way to visualize matrix formation caused by Fuel Matrix is to compare it with Micelle formation in colloid liquids. Fuel Matrix aggregates (or matrices) are formed by similar principals.  The matrices form through the three types of polar interactions: 1) ionic bonds, 2) covalent bonds, and 3) the induced dispersion polarization of hydrocarbon molecules. Fuel Matrix contains ionic compounds with strongly stabilized electrostatic attraction between its positive and negative ions. The higher charges (2+ and 3+) and smaller sizes of the ions create a stronger electromagnetic field.  In turn, ionic Fuel Matrix orients the less polar covalent molecules of ethanol and water along and around an ionic core. In covalent molecules, the positive site interacts with the anion and the negative site with cation. Most important, the combination of ionic Fuel Matrix and covalent dipoles induces weak dipoles in the long-chained fuel hydrocarbons which stabilize the Fuel Matrix interactions with stronger covalent dipoles.
How does Fuel Matrix strengthen oxyphilic nature of a hydrocarbon molecule?
Even though the O2 molecule of oxygen is basically non-polar, it consists of two paramagnetic oxygen atoms. When added to Fuel Matrix stabilized fuel, the induced polarity (the mechanism described in answer # 7) creates a weak dipole with weak positive and negative charges. At the same time, the hydrocarbon molecules in the fuel have induced polarity due to the Fuel Matrix function(see answer to question # 5). The positive side of the fuel’s hydrocarbon molecules are attracted to the negative side of the oxygen molecules which now are slightly polar and oriented in the electromagnetic field created by Fuel Matrix. This is how hydrocarbon molecules become more oxyphilic.
How are the paramagnetic oxygen atoms attracted to an electric field dipole?
Upon mixing with fuel, the strong ionic compounds of Fuel Matrix create electromagnetic fields. When oxygen from the air is added to the mixture, its paramagnetic atoms get oriented in the electromagnetic field created by the Fuel Matrix’s ionic compounds. As a result of this orientation, the oxygen now has induced polarity and interacts with all other polar molecules in the mixture:the ionic and covalent bonded compounds of the Fuel Matrix plus polarized fuel hydrocarbons. The actual strength of this attraction can be measured by coulomb’s formula:

where Q1 represents the quantity of charge on an a given O2 molecule (in Coulombs), Q2 represents the quantity of charge on a charged hydrocarbon molecule (in Coulombs),and represents the distance of separation between the two molecules/atoms (in meters). The symbol k is a proportionality constant known as the Coulomb's law constant. The value of this constant is dependent upon the medium that the charged objects are immersed in. In the case of air, the value is approximately 9.0 x 109 N • m2 /C2.  In the case of Fuel Matrix treated fuel, the value will depend on the type of fuel and its respective mixture of different hydrocarbon molecules.
How does Fuel Matrix stimulate more complete combustion?
Fuel Matrix stimulates more complete combustion in two ways.  First, with Fuel Matrix added in the fuel, both the hydrocarbon and oxygen molecules become polarized and more attracted to each other. This effect leads to a better (more homogeneous) mixture and a higher number of collisions between oxygen and hydrocarbon molecules.  A greater number of collisions leads to better combustion because more molecules have reacted. Second, the polarization of oxygen and hydrocarbon molecules results in a lower activation energy barrier (the chemical combustion reaction needs less energy to begin).  Therefore, less energy is wasted for the activation and this savings are transferred in the useful energy.
How much do carbon carbon-dioxide emissions decrease as a result?
When studying carbon reduction, it is important to consider total carbon output (CO2, CO and particulates).  The main decrease in carbon emissions comes from the reduction of small carbon particulates (particulate matter or PM).  PM is usually created from not completely oxidized hydrocarbons.  Better homogenization of fuel leads to more complete combustion and less PM creation because almost all hydrocarbons are completely oxidized. With regard to CO2 reductions, Fuel Matrix doesn’t reduce CO2 as much as PM. ( Less CO2 and less Carbon because due to FuelMatrix LESS HYDROCARBON MOLECULES BURN MORE EFFICIENTLY ALMOST COMPLETELY). Fuel Matrix does help fuel burn more efficiently, creating more energy and using less fuel to create the same amount of work.  For illustration, imagine an engine combusting100 grams of fuel.  Without Fuel Matrix, the combustion reaction might create 150 grams of CO2, 20 grams of carbon (PM) and 1 kilojoule of energy.  With Fuel Matrix, the engine only needs 90 grams of fuel to produce 1 kilojoule of energy and only 135 grams of CO2 will be produced because less fuel used to create the same amount of energy.
How does Fuel Matrix affect the IntermolecularForces (IMF) between nitrogen and oxygen?
Without Fuel Matrix, both the molecules of oxygen and nitrogen are non-polar.  As a result, the nitrogen molecules with very weak IMFs compete with the non-polar hydrocarbon molecules in the fuel for collisions with oxygen. The probability of the effective collision is defined by the concentrations of the oxygen, nitrogen, and hydrocarbons.  With Fuel Matrix, the fuel molecules become polarized while the nitrogen molecules remain non-polar. Due to the stronger polar-polar IMFs between oxygen and fuel molecules, the IMFs between oxygen and non-polar nitrogen are can’t compete as well. Overall, the result is an increase in combustion efficiency with more heat going into useful work and less going into NOx formation.  The weaker relative IMFs between oxygen and nitrogen create fewer N2/O2 collisions, and the smaller percent of effective N2/O2 collisions achieving activation barrier retard NOx formation.

More details here

More questions? Let's get in contact.